On the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles
نویسنده
چکیده
For the unitary ensembles of N × N Hermitian matrices associated with a weight function w there is a kernel, expressible in terms of the polynomials orthogonal with respect to the weight function, which plays an important role. For the orthogonal and symplectic ensembles of Hermitian matrices there are 2 × 2 matrix kernels, usually constructed using skew-orthogonal polynomials, which play an analogous role. These matrix kernels are determined by their upper left-hand entries. We derive formulas expressing these entries in terms of the scalar kernel for the corresponding unitary ensembles. We also show that whenever w/w is a rational function the entries are equal to the scalar kernel plus some extra terms whose number equals the order of w/w. General formulas are obtained for these extra terms. We do not use skeworthogonal polynomials in the derivations.
منابع مشابه
ar X iv : s ol v - in t / 9 90 70 08 v 2 2 9 Se p 19 99 Inter - relationships between orthogonal , unitary and symplectic matrix ensembles
We consider the following problem: When do alternate eigenvalues taken from a matrix ensemble themselves form a matrix ensemble? More precisely, we classify all weight functions for which alternate eigenvalues from the corresponding orthogonal ensemble form a symplectic ensemble, and similarly classify those weights for which alternate eigenvalues from a union of two orthogonal ensembles forms ...
متن کاملCorrelations for superpositions and decimations of Laguerre and Jacobi orthogonal matrix ensembles with a parameter
A superposition of a matrix ensemble refers to the ensemble constructed from two independent copies of the original, while a decimation refers to the formation of a new ensemble by observing only every second eigenvalue. In the cases of the classical matrix ensembles with orthogonal symmetry, it is known that forming superpositions and decimations gives rise to classical matrix ensembles with u...
متن کاملUniversal Wide Correlators in Non-gaussian Orthogonal, Unitary and Symplectic Random Matrix Ensembles
We calculate wide distance connected correlators in non-gaussian orthogonal , unitary and symplectic random matrix ensembles by solving the loop equation in the 1/N-expansion. The multi-level correlator is shown to be universal in large N limit. We show the algorithm to obtain the connected correlator to an arbitrary order in the 1/N-expansion.
متن کاملThe Gaussian and Wishart Ensembles: Eigenvalue Densities
1.1. Orthogonal and Unitary Invariance. For the classical random matrix ensembles — the Gaussian Orthogonal, Unitary, and Symplectic Ensembles, the real and complex Wishart Ensembles, and the Circular Ensembles — the joint probability densities of the matrix entries, relative to Lebesgue measures, are functions only of the eigenvalues. This makes it possible to express the joint densities of th...
متن کاملOn the similarity between Nakagami-m Fading distribution and the Gaussian ensembles of random matrix theory
We report the similarity between the Nakagami-m fading distribution and the three Gaussian ensembles of random matrix theory. We provide a brief review of random matrix theory and wireless fading. We show that the Nakagami-m distribution serves as mapping between the three ensembles. The statistics of the wireless fading amplitude, as modeled by Nakagami-m distribution, provide a rare example o...
متن کامل